Cellular S-value of beta emitter radionuclide’s determined using Geant4 Monte Carlo toolbox, comparison to MIRD S-values
نویسندگان
چکیده
Introduction: Spatial dose distribution around the radionuclides sources is required for optimized treatment planning in radioimmunotherapy. At present, the main source of data for cellular dosimetry is the s-values provided by MIRD. However, the MIRD s-values have been calculated based on analytical formula in which no electrons straggling is taken to account. In this study, we used Geant4-DNA Monte Carlo toolbox to calculate s-values and the results were compared to the corresponding MIRD data. Methods: Similar to MIRD cell model, two concentric spheres representing the cell and its nucleus were used as the geometry of simulation. The cells were assumed to be made of water. Cellular s-values were calculated for three beta emitter radionuclides I, Y and Lu that are widely used in radioimmunotherapy. Few lines of code in C++ were added into Geant4-DNA codes to automatically calculate the s-values and transfer data into excel files. Results: The differences between two series of data were analyzed using Pearson’s correlation and Bland-Altman curves. We observed high correlation (R>0.99) between two series of data for self-absorption; however, the agreement was very weak and Wilcoxon signed rank test showed significant difference (p-value<0.001). In cross-absorption, Bland-Altman analysis showed a considerable bias between MIRD s-values and corresponding Geant4-DNA data. The percent differences between the data were -79% to +67%. Conclusion: Results of the comparison show a reflection of systematic error rather than statistical fluctuation. The inconsistency is most probably associated with the neglecting of straggling and δ-ray transport in MIRD analytical method.
منابع مشابه
Cellular S-value of beta emitter radionuclide’s determined using Geant4 Monte Carlo toolbox, comparison to MIRD S-values
Introduction: Spatial dose distribution around the radionuclides sources is required for optimized treatment planning in radioimmunotherapy. At present, the main source of data for cellular dosimetry is the s-values provided by MIRD. However, the MIRD s-values have been calculated based on analytical formula in which no electrons straggling is taken to account. In this study, we used Geant4-DNA...
متن کاملEvaluation of cellular S-value of auger electrons emitting 111In radionuclide by Geant4 and its comparison with MCNP5 Monte Carlo codes and MIRD published data
Introduction: Now day Ionizing radiation has found increasing applications in cancer treatment. However, in the treatment different kinds and size of tumors especially metastatic and small size tumors, conventional methods of external radiation therapy are not common. In radionuclide therapy, the use of monoclonal antibodies has made it possible to achieve maximum dose to small size tumor and m...
متن کاملRadioiodine (131-I) treatment for Graves’ disease: Geant4 Monte Carlo simulation for patient personalized dose estimation
Background: Reliable estimation of radiation-absorbed dose is necessary to evaluate the benefits and the risks of radiopharmaceuticals used for diagnostic or therapeutic purposes in nuclear medicine. Materiel and Methods: This study included 47 patients treated with iodine-131 for Graves’ disease. A comparative study between Geant4 Monte Carlo simulation and MIRD formalism was carried out to ev...
متن کاملMicrodosimetry study of a multicellular model with mono-energetic electrons using Geant4-DNA simulation toolkit
Introduction: The goal of any type of radiation therapy in the treatment of tumors, in addition to destroying cancer cells, is to minimizing radiation to nearby healthy cells and thus reducing side damages. For this purpose, targeted radiation therapy (TRT) is more effective in treating of single cells or small cluster of cells. The main factor in the success of this method is...
متن کاملCalculation and evaluation of energy deposition and S-value caused by low-energy electrons in a multicellular model using Geant4-DNA
Today, targeted radiation therapy (TRT) methods for cancer treatment, besides the goal of completely destroying the target tumor, attempts to prevent nearby healthy cells from exposure to ionizing radiation as far as possible. Hence, short-range charged particles, such as low-energy electrons that are suited to achieving these two goals together, play an important role in TRT and so, adoption o...
متن کامل